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1. (a) Use the half-angle identities (cos2
θ

2
=

1 + cos θ

2
and sin2

θ

2
=

1− cos θ

2
) to evaluate∫

1

1 + cos (x+ a)
dx,

where a is a constant.

(b) Use part (a) to evaluate ∫
1

1− sinx
dx.
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2. Projectile Dynamics Optimization:

The path of a projectile fired at an angle θ (where 0 ≤ θ ≤ π/2) and initial speed v0 from a
point (0, y0) in the x-y plane where y0 > 0, can be expressed in terms of the equations

x(t) = (v0 cos θ)t

y(t) = −1

2
gt2 + (v0 sin θ)t+ y0

Here x(t) represents the horizontal distance the projectile travels and y(t) represents the
height of the projectile above ground level (y = 0) as a function of time t. The projectile
starts at horizontal position x = 0 and is shot from an initial height above the ground y0
(when t = 0).

Identify the optimal value of θ such that the horizontal distance traveled by the projectile
before it hits the ground (y = 0) is maximized. Please list your corresponding value of θ, the
projectile range (i.e. what is the initial angle and how far away does the projectile land?), and
explain how you arrived at your result.
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3. Let f : [0, 1] → R be a continuous function such that f ′ and f ′′ are also continuous on [0, 1].

a. Show that if the series
∞∑

n=1

f

(
1

n

)
is convergent, then f(0) = 0 and f ′(0) = 0.

b. Conversely, show that if f(0) = 0 and f ′(0) = 0, then

∞∑
n=1

f

(
1

n

)
is convergent.

(Hint: You may consider using the Mean Value Theorem.)
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1a Rewrite the integral as ∫
1

2 cos2 x+a
2

dx.

3

Use the substitution u = x+a
2 to rewrite the integral as∫
1

cos2 u
du =

∫
sec2 udu = tanu+ C = tan

x+ a

2
+ C

2

1b Use sinx = − cos (x+ π
2 ) to rewrite the integral as

∫
1

1+cos (x+π
2 )dx. 3

Use part a) to conclude that
∫

1
1−sin xdx = tan (x2 + π

4 ) + C 2

2 Substitute in for t and set y = 0

0 = −
(

g

2v20 cos
2 θ

)
x2 + (tan θ)x+ y0(1)

or

0 = −1

2
gx2 +

(
v20 cos θ sin θ

)
x+ y0v

2
0 cos

2 θ(2)

This determines x = x(θ) at the point where y = 0.

2

Now compute dx/dθ

0 = − gx

v20 cos
2 θ

dx

dθ
−
(
gx2

v20

)
sin θ

cos3 θ
+ tan θ

dx

dθ
+

1

cos2 θ
x,(3)

or

−gx
dx

dθ
+ v20

[
cos2 θ − sin2 θ

]
x+ v20 sin θ cos θ

dx

dθ
− 2y0v

2
0 cos θ sin θ(4)

3

Set dx/dθ = 0 to get and cancel constant factors to get

0 = −
gx2

opt

v20

sin θopt
cos3 θopt

+
1

cos2 θopt
xopt.(5)

or

0 = cos 2θoptxopt − y0 sin 2θopt(6)

where we have used cos 2θ = cos2 θ − sin2 θ and sin 2θ = 2 sin θ cos θ.

2

Then, the optimal distance is

xopt =
v20

g tan θopt
.(7)

or equivalently

xopt = y0 tan 2θopt(8)

Putting either or these values of x back in equation (1) or (2) allows one to find the optimal
θ which has

sin θopt =
1√

2
(
1 + gy0

v2
0

)(9)

The value of any trig function of θ would work.

3
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3a Suppose that f(0) ̸= 0 and wlog suppose f(0) > c. Then, there
exist N > 0 such that f(x) ≥ c/2 and x ∈ [0, 1/N ] so that

+∞ >

N−1∑
n=1

f

(
1

n

)
+

∞∑
n=N

f

(
1

n

)
≥

N−1∑
n=1

f

(
1

n

)
+

∞∑
n=N

c

2
= +∞,

a contradiction.
Alternatively, since the series is convergent, we have that

lim
n→∞

f(
1

n
) = 0.

On the other hand, since f is continuous at 0 and { 1
n} converges

to 0, we have that

lim
n→∞

f(
1

n
) = f( lim

n→∞

1

n
) = f(0) = 0.

3

Suppose that f ′(0) ̸= 0 and wlog suppose f ′(0) > c. The ap-
plication of the mean value theorem to f on [0, 1/n] leads to
f(1/n) − f(0) = f(1/n) = f ′(en)/n where 0 ≤ en ≤ 1 and
limn→∞ en = 0. Then, there exist N ∈ N such that f(en) ≥ c/2
for n ≥ N so that

+∞ >

∞∑
n=1

f

(
1

n

)
=

∞∑
n=1

f ′(en)

n

=

N−1∑
n=1

f ′(en)

n
+

∞∑
n=N

f ′(en)

n
≥

N−1∑
n=1

f ′(en)

n
+

c

2

∞∑
n=N

1

n
= +∞,

a contradiction.
Alternatively, Suppose that f ′(0) ̸= 0 and wlog suppose f ′(0) =
c > 0. The application of the mean value theorem to f on [0, 1/n]
leads to f(1/n) − f(0) = f(1/n) = f ′(en)/n where 0 ≤ en ≤ 1
and limn→∞ en = 0. Then

lim
n→∞

f ′(en)
n
1
n

= c > 0,

thus, by the Limit Comparison Test, the given series has the same
nature as the harmonic series and, therefore, is divergent, which
contradicts the hypothesis.

3
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3b Apply the mean value theorem to f on [0, 1/n] to obtain f(1/n) =
f(1/n) − f(0) = f ′(en)/n for en ∈ (0, 1/n), and again to f ′ on
[0, en] to obtain f ′(en) = f ′(en) − f ′(0) = f ′′(dn)en where dn ∈
(0, en). Hence

∞∑
n=1

∣∣∣∣f ( 1

n

)∣∣∣∣ = ∞∑
n=1

|f ′′(dn)|
en
n

=

∞∑
n=1

|f ′′(dn)|
1

n2
≤

(
sup

x∈[0,1]

|f ′′(x)|

) ∞∑
n=1

1

n2
< +∞.

Since absolute summability implies summability, the result fol-
lows.
(The last part of the proof could be stated as follows: Let
M = supx∈[0,1] |f ′′(x)|. Then for all n,

|f ′′(dn)|
en
n2

≤ M

n2
.

Since the series
∑∞

n=1
M
n2 is convergent, by the Direct Comparison

Test, we have that the series
∞∑

n=1

|f ′′(dn)|
en
n

is convergent. Thus, the given series is absolutely convergent and,
therefore, convergent.)
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