

Environmental Biology: Molecules and Cells Department of Environmental Science & Policy Lecture: EVPP210-001 Spring 2020, MW 1:30 am-2:45 pm Nguyen Engineering Building, Room 1108

Lecture Instructor:

Name: Dr. Scott Glaberman Email: <u>sglaberm@gmu.edu</u> Office Hours: W 2:45-3:45pm *please make appointment* Office: DKH Room 3024 (Note: I am only in Fairfax on Mondays and Wednesdays)

Learning Assistant:

Name: Charlotte Joannidis Email: <u>cjoannid@masonlive.gmu.edu</u> Office Hours/Review Sessions: TBD

Lab Instructors/Location:

Eric Mazur (EVPP210-201) Zachary Combs (EVPP210-202) DKH 3021

Required Materials:

Textbook: Life: The Science of Biology, by Sadava et al., <u>11th edition</u>. Sinauer/MacMillan Laboratory Manual: Introductory Cell Biology Laboratory Manual <u>2nd Edition</u> (Required) Access to course material on Blackboard at https://mymasonportal.gmu.edu

Course Description:

The goal of this course is to give students core knowledge of molecular and cellular biology that is critical for understanding the relationship between living organisms and their environment. Much of the biology encountered in upper level environmental science courses at GMU will be based on information from this class. The basic principles will be taught by lectures listed below and will be based on material in the textbook. Lecture material will be presented with PowerPoint and may contain some material not found in the textbook. The lecture schedule is subject to change based on progress. Questions or comments to the instructor are encouraged in class but I may communicate with students by email so every student must have an active GMU email account. Please note that lecture and laboratory are linked (grade is based on performance in both), so they must be taken concurrently and require similar levels of understanding about the key concepts of environmental biology. The lecture section will highlight each week's reading and study assignments; the laboratory section will provide further explanation and experimental investigations of key concepts.

Course Organization:

Three lecture exams covering specific sections of the material will be administered during the semester and a cumulative final exam will be administered during the scheduled final examination period. All exams are multiple choice worth 100 points each. One lowest exam score will be dropped (does not include final). No make-up exams are allowed except for students involved in university sponsored activities (athletics, student council,

EVPP210

etc.) with appropriate documentation. Students missing an exam because of illness or any other reason will have that particular exam score automatically dropped. *The purpose of the dropped exam is to offset bad days, flat tires, illness, or other unexpected absences.*

Six case studies will be completed in alone or in groups during class time. Each case study will count for 10 pts. The lowest case study grade will be dropped. This is to account for unforeseen absences. <u>There are no makeups</u>. Information from these case studies could show up on the exam.

Course Policies:

All students are expected to maintain the GMU honor code by practicing ethical behavior and submitting original work. To assist with another student's unethical behavior is also a violation of the honor code. Remember, the honor code protects your hard work and the value of your degree from GMU. Please turn off cell phones or pagers before class begins. If using electronic devices (such as phones, laptops, tablets), please be respectful of your peers and your instructor and do not engage in activities that are unrelated to class. Such disruptions can affect your grade. Unless otherwise noted by the instructor prior to the exam, these assessments will be taken without the use of study aids, memoranda, textbooks, other books, data, or other information available. The purpose of these assessments is to evaluate the student's progress in understanding the material. There should be nothing on your desk except a pencil and a bottle of water when taking exams.

E-mail policy: I do not respond to emails in the evenings (after 5 pm) or during the weekends, nor do I expect you to. Also, please allow at least 48 hours for a response. Therefore, please be proactive in figuring out what questions you have and do not leave things until the day before an exam or assignment.

If you are a student with a disability and you need academic accommodations, please see Dr. Glaberman and contact the Office of Disability Services (ODS) at 993-2474. All academic accommodations must be arranged through the ODS.

Disclaimer: The instructor reserves the right to make modifications to this information throughout the semester.

-

Three lecture exams*	+100 points each
Cumulative final	+100 points
Case Studies*	+50 points
La aluma kakal	250
Lecture total	350 points
Laboratory total	+150 points

Number Grade	Letter Grade	
93-100	Α	
90-92	A-	
87-89	B+	
83-86	В	
80-82	В-	
77-79	C+	
70-76	С	
60-70	D	
<60	F	
A CURVE WILL NOT BE APPLIED		

*Lowest score dropped

Schedule of Lectures:

Week	Days	Торіс	Chapter
1	Jan 22	Introduction to Course	
2	Jan 27	Scientific Method	1
	Jan 29	Case Study 1: Disappearing Marine Iguanas	1
3	Feb 3	Small Molecules	2
	Feb 5	Small Molecules	2
4	Feb 10	Proteins, Carbohydrates, and Lipids	3
	Feb 12	Proteins, Carbohydrates, and Lipids	3
5	Feb 17	Case Study 2: Curly and Straight Hair	2-3
	Feb 19	Exam 1	1-3
6	Feb 24	Nucleic Acids	4
	Feb 26	Cells	5
7	Mar 2	Cell Membranes	6
	Mar 4	Case Study 3: Learning Assistant Surprise	?
8	Mar 9	Spring Break: No Classes	
	Mar 11	Spring Break: No Classes	
9	Mar 16	Cell Signaling	7
	Mar 18	Case Study 4: Insulin Signaling	7
10	Mar 23	Energy, Enzymes, and Metabolism	8
	Mar 25	Exam 2	4-8
11	Mar 30	Pathways that Harvest Energy	9
	Apr 1	Pathways that Harvest Energy	9
12	Apr 6	Photosynthesis	10
	Apr 8	Case Study 5: Killing Chloroplasts	10
13	Apr 13	Meiosis and Mitosis	11
	Apr 15	Meiosis and Mitosis	11
14	Apr 20	Inheritance	12,13
	Apr 22	Inheritance	12,13
15	Apr 27	Exam 3	8-10
	Apr 29	From DNA to Protein	14
16	May 4	Case Study 6: The Sound of DNA	14
	May 6	Final Exam (1:30-4:15)	Cumulative