Instructor: Dr. Wendy Lewis
Instructor e-mail: glewis13@gmu.edu
Course Time: Thursday 1:30am – 4:10pm
Course Location: Exploratory Hall L509
Credits: 3
Instructor Office: Krasnow 254
Office Hours: Drop-in office hours are held during the times below. If you are unable to attend a drop-in time, please email me to schedule an appointment.
 • Tuesday & Thursday 11am- 12pm (in-person). On these days I will be in my office, Krasnow Building, room 254.
 • Monday & Wednesday 12pm-1pm (virtual). Drop into the Zoom room to meet https://gmu.zoom.us/j/4952912681

Course Overview:
Zebrafish (Danio rerio) are a powerful model system used in neuroscience, biology and pharmacology research. This is primarily because zebrafish embryos are optically transparent and develop externally, which means that developmental processes can be directly visualized and manipulated beginning at the one-cell stage! Zebrafish are also vertebrates, and their nervous system has more in common with humans than you might think. In this laboratory, you will use zebrafish as a model system to study vertebrate nervous system development. You will learn basic techniques for manipulating, imaging, and analyzing zebrafish embryos, while performing experiments to investigate the structure and function of the nervous system in healthy and diseased states. You will work with other students to design and carry out a novel scholarly research project.

Safe Return to Campus
All students taking courses with a face-to-face component are required to follow the university’s public health and safety precautions and procedures outlined on the university Safe Return to Campus webpage (https://www2.gmu.edu/safe-return-campus). Similarly, all students in face-to-face and hybrid courses must also complete the Mason COVID Health Check daily, seven days a week. Only students who receive a “green” notification are permitted to attend class. You will be required to your “green” notification upon entry to class. If you suspect that you are sick or have been directed to self-isolate, please quarantine or get testing. DO NOT ATTEND CLASS IF YOU ARE SICK!

Students are required to follow Mason's current policy about facemask-wearing. As of August 11, 2021, all community members are required to wear a facemask in all indoor settings, including classrooms. An appropriate facemask must cover your nose and mouth at all times in our classroom. If this policy changes, you will be informed. Students who do not have a facemask will be asked to leave the classroom.

Mason Impact + Research and Scholarship
This course is designated as a Mason Impact + Research and Scholarship course. This means you will “engage in the process of generating and sharing undergraduate research”. As part of the course, you will design, execute, and present a research project relating to neurodevelopment in zebrafish. Your completed project can be submitted for a special transcript designation displaying the title of your project, and you may present your project at one of Mason’s symposiums.

Research and Scholarship Learning Goals
During this course you will work in small groups to design, execute, and present an original research project. Each group’s project will be different and will make important contributions to our knowledge of nervous system development. Research and scholarship related learning goals and the course activities that support them are listed below.

Core: Articulate and refine a question, problem, or challenge.
 • Project proposal

Discovery: Distinguish between personal beliefs and evidence.
 • Project proposal
 • Lab reports

Ethics: Identify relevant ethical issues and follow ethical principles.
 • Lab reports
 • Lectures/discussions

Method: Choose an appropriate research method for scholarly inquiry.
 • Project proposal
 • Investigation of live imaging, morphology, and locomotor behavior
 • Free project work

Method: Gather and evaluate evidence appropriate to the inquiry.
 • Investigation of live imaging, morphology, and locomotor behavior
 • Immunohistochemistry
 • Free project work

Method: Appropriately analyze scholarly evidence.
 • Investigation of live imaging, morphology, and locomotor behavior
 • Immunohistochemistry
 • Free project work
 • Project presentations
 • Lab reports

Context: Explain how scholarly inquiry has value to society.
 • Project presentations
 • Lab reports
 • Lectures/discussions

Context: Explain how knowledge is situated and shared in relevant scholarly contexts.
 • Lectures/discussions

Creation: Take responsibility for creating and executing an original scholarly or creative project.
 • Project proposal
 • Project meetings
 • Investigation of live imaging, morphology, and locomotor behavior
 • Immunohistochemistry
 • Free project work

Communication: Communicate knowledge from an original scholarly or creative project.
 • Project presentations
 • Project write-up

Course Specific Learning Goals:
By the end of this course, you should be able to...
 • Compare and contrast the organization of the nervous system in zebrafish and humans
 • Describe the advantages and disadvantages of zebrafish as a model system
 • Describe common experimental techniques used in zebrafish research
• Perform basic zebrafish manipulations, including staging embryos, dechorionating, removing unfertilized embryos, and exchanging media
• Anesthetize zebrafish embryos and perform live imaging
• Analyze embryo morphology and locomotor behavior
• Explain the concept of immunohistochemistry and use this technique to analyze neurons and glia in whole-mount embryos
• Analyze data using appropriate statistics
• Explain how alcohol and other drugs affect nervous system development at the molecular, cellular, and morphological level
• Diagram and explain the development of the zebrafish nervous system
• Develop a research question, design an experiment, collect data, carry out analyses and interpret results
• Effectively present your research in written and oral format

Opportunities to Present Research
Students will have the opportunity to present their research projects within and outside of Mason. These opportunities will be discussed in class and assistance will be provided in preparing applications and abstracts. Opportunities include: The Society for Neuroscience Annual Meeting, the Mid-Atlantic Society for Developmental Biology Annual Meeting, the COS Undergraduate Research Colloquium, the OSCAR Celebration of Student Scholarship, and more.

Text and Readings
There is no required text. All readings/activities will be provided and posted on Blackboard.

Supplies
• Lab notebook (cheap composition book is fine)
• One laptop or tablet with USB port per group. If no one in your group has one, please let the instructor know

Grading and Assessments:

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Notebook</td>
<td>10%</td>
</tr>
<tr>
<td>Participation</td>
<td>15%</td>
</tr>
<tr>
<td>Lab Reports/Assignments/Quizzes</td>
<td>40%</td>
</tr>
<tr>
<td>Research Project (Proposal, Oral, Poster)</td>
<td>35%</td>
</tr>
<tr>
<td>Total Grade</td>
<td>100%</td>
</tr>
</tbody>
</table>

Grading Scale:
A+ 98-100% B+ 88-89% C+ 78-79% D 60-69% F 0-59%
A 90-97% B 80-87% C 70-77%

Assignment Details:
Lab Notebook- You will maintain a lab notebook according to guidelines provided by the instructor. Someone unfamiliar with the lab procedures should be able to look at your lab notebook and replicate the procedures that you conducted during class. Details about what should be included in lab notebooks will be provided on a weekly basis.

Participation: Your grade in this course will include a participation score ranging from 0 – 5 points per class meeting. A score of 5 points will be given to a student who reports to lab on time, is prepared by
having completed the readings ahead of time, is properly dressed, and actively participates in all lab activities and class discussions. A score below 5 points will be given to a student who does not fully demonstrate 100% effort in a given lab session. This could include things like arriving late, being unprepared, inappropriate phone usage during class, not having done the readings, not actively participating in lab activities and discussions, disrupting other students, failing to cooperate, leaving lab before all the work (including cleaning) is done, etc. If you are unable to attend due to illness or not receiving a “green” health check, email the professor for alternative assignments.

Lab Reports/Assignments/Quizzes: You will complete written lab reports to assess your knowledge of classroom activities. Some reports may include statistical analysis that require you to use GMU’s computer labs. Other reports will include the objective of the experiment, the hypothesis tested, reporting of results, and conclusions regarding the results. Before attending lab each week, you will usually need to 1) watch the pre-lab lecture, 2) read the weekly research paper, and 3) read the weekly lab activity. You will take pre-lab quizzes on that material in Blackboard.

Research Project: You will work in small groups to design, conduct, and present an original research project using zebrafish embryos and the techniques covered in class. You and your group will work together on this project throughout the semester. Your group will give an oral presentation of your findings and will report results in written format in lab reports throughout the semester. Detailed information about this project will be distributed in class. The research project will include a proposal (individual assignment), final oral presentation (group assignment), and poster (group assignment).

Attendance Policy and Late Work
You are expected to attend class and participate in all discussions and activities. Attendance is an integral part of this course, and absences will result in significant missed information. Unexcused absences will result in a loss of participation points for the day. Please contact the instructor if you will be unable to attend lab or have not been cleared by the Mason COVID Health Check. There will be no make-up labs available, but alternative work may be assigned. Late work will incur a penalty of 20% and may be turned in up to 2 weeks after the deadline.

All policies may be modified on an individual basis at the discretion of the instructor. Excused absences may require a doctor’s note or other documentation

Communication and E-mail
If you need to contact me, please do so using e-mail from your university account only. Include the course name in the subject line and your name in the e-mail. Check your e-mail and course Blackboard account daily and before each class meeting. I will use e-mail and Blackboard to communicate with you regarding changes related to the course, syllabus, and other essential information. You are responsible for all announcements posted and sent via Blackboard and e-mail, in addition to announcement made in class.

Student Conduct Policies
Be kind and respectful to your classmates, Disruptive, disrespectful, or rude behavior will lead to dismissal from class and will count as an absence for the day. You will also miss out on all the cool things we do in lab!

Cell phones in the lab: Please silence phones during class. Texting is not allowed. Cell phone use/ringing (other than for emergency) during class may result in deduction of points from the course participation grade.

Computers in the lab: Computers will only be allowed in the lab during specified times.

Laboratory Dress: You must wear long pants and closed toed shoes in the laboratory. If you are improperly dressed, you will not be allowed into the lab.

Food and Drink: There is absolutely no food or drink allowed in the lab.
Academic Integrity
Honesty and integrity are issues at the very core of this course and of science as a whole. George Mason has an honor code with clear guidelines for academic integrity. A few of the most important rules that pertain to this course are as follow: 1) All work submitted must be your own should be done individually unless explicitly stated otherwise. You will be encouraged to discuss ideas, collaborate, and brainstorm with your classmates, but actual assignments need to be completed individually. 2) When referencing the work of others (this includes published and non-published work or ideas), full credit must be given through appropriate citations. 3) If you are ever unsure about the rules for an assignment, ask for clarification. Cheating and plagiarism of any form is not tolerated. Plagiarism means using the exact words, opinions, or information from another person without giving the appropriate credit. Any offense will result in a grade of F for the course and will be dealt with in accordance with university regulations.

Disability Accommodations
If you have a documented learning disability or other condition that may affect academic performance you should: 1) make sure this documentation is on file with Office of Disability Services (SUB I, Rm. 4205; 993-2474; http://ods.gmu.edu) to determine the accommodations you need; and 2) talk with me to discuss your accommodation needs.

Mason Diversity Statement*
George Mason University promotes a living and learning environment for outstanding growth and productivity among its students, faculty and staff. Through its curriculum, programs, policies, procedures, services and resources, Mason strives to maintain a quality environment for work, study and personal growth.

An emphasis upon diversity and inclusion throughout the campus community is essential to achieve these goals. Diversity is broadly defined to include such characteristics as, but not limited to, race, ethnicity, gender, religion, age, disability, and sexual orientation. Diversity also entails different viewpoints, philosophies, and perspectives. Attention to these aspects of diversity will help promote a culture of inclusion and belonging, and an environment where diverse opinions, backgrounds and practices have the opportunity to be voiced, heard and respected.
* This is an abbreviated statement, full statement is available at http://ctfe.gmu.edu/professional-development/mason-diversity-statement/

Privacy and E-mail Use
Students must use their MasonLive email account to receive important University information, including communications related to this class. I will not respond to messages sent from or send messages to a non-Mason email address.

Student Services
- Learning Services (learningservices.gmu.edu/keeplearning/)
- University Libraries (library.gmu.edu)
- Writing Center (writingcenter.gmu.edu)
- Counseling and Psychological Services (caps.gmu.edu)
- See a longer list of Mason student support services posted on The Stearns Center website.

Add/Drop Deadlines
Deadlines for the Fall 2021 semester can be found on the Mason Academic Calendar page.
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Lab Activities</th>
<th>Pre-Lab Activities and Assignments Due</th>
</tr>
</thead>
</table>
| **Week 1**
Aug 26 | Introduction to Zebrafish | • Introduction to zebrafish
• Laboratory safety and zoonosis
• Introduce projects
• Field trip to Krasnow? | Pre-Lab Activities
• Watch Pre-Lab Lecture
• Read Kimmel at al., 1995 pages 253-260
• Read Lab Guide: Staging and Development
• **Take Pre-Lab Quiz**
Assignments Due
• **Zebrafish CITI training**
(submit completion reports to Blackboard) |
| **Week 2**
Sept 2 | Staging and Development | • Temperature experiment
• Staging exercise
• Dechorionate and label anatomy | Assignments Due
• **Staging Lab Report** |
| **Week 3**
Sept 9 | Live Imaging | • Microscopes, anesthesia, and live imaging
• **Discuss Projects** | Assignments Due
• **Staging Lab Report** |
| **Week 4**
Sept 16 | Morphology Scoring | • Experimental design
• Assign project proposals
• Score morphology of embryos
• **Project meetings** | Assignments Due
• **Live Imaging Lab Report Due**
• **Choose chemical/ experimental question** |
<table>
<thead>
<tr>
<th>Week 5</th>
<th>Sept 23</th>
<th>Data Analysis and Graphing</th>
<th>• Raw data to figures: SPSS and Image J Tutorial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Online Tutorial- no class meeting</td>
<td>Online Tutorial- no class meeting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-Lab Activities</td>
<td>• TBD</td>
</tr>
<tr>
<td>Assignments Due</td>
<td></td>
<td></td>
<td>• Project Proposals Due</td>
</tr>
<tr>
<td>Week 6</td>
<td>Sept 30</td>
<td>Locomotor Development</td>
<td>• Analyze spontaneous tail coiling and touch-evoked responses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-Lab Activities</td>
<td>• Watch pre-lab lecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Read Downes and Granato, 2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Read Lab Guide: Locomotor Analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Take Pre-Lab Quiz</td>
</tr>
<tr>
<td>Assignments Due</td>
<td></td>
<td></td>
<td>• Morphology and Data Analysis Lab Report Due</td>
</tr>
<tr>
<td>Week 7</td>
<td>Oct 7</td>
<td>Solutions and Dilutions</td>
<td>• Make project solutions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Practice pipetting and experimental setup</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-Lab Activities</td>
<td>• TBD</td>
</tr>
<tr>
<td>Assignments Due</td>
<td></td>
<td></td>
<td>• Locomotor Lab Report Due</td>
</tr>
<tr>
<td>Week 8</td>
<td>Oct 14</td>
<td>Tour of Krasnow Lab (237)?</td>
<td>• Tour of Krasnow Lab-Meet in Kranow 237?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-Lab Activities</td>
<td>• TBD</td>
</tr>
<tr>
<td>Assignments Due</td>
<td></td>
<td></td>
<td>• TBD</td>
</tr>
<tr>
<td>Week 9</td>
<td>Oct 21</td>
<td>Project Work I</td>
<td>• Live Imaging, Morphology and Locomotor Analysis</td>
</tr>
<tr>
<td>Week 10</td>
<td>Oct 28</td>
<td>Project Work II</td>
<td>• Live Imaging, Morphology and Locomotor Analysis</td>
</tr>
<tr>
<td>Week 11</td>
<td>Nov 4</td>
<td>Project Work III</td>
<td>• Live Imaging, Morphology and Locomotor Analysis</td>
</tr>
<tr>
<td>Week 12</td>
<td>Nov 11</td>
<td>Immunohistochemistry (IHC) I</td>
<td>• Day 1 IHC on project embryos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-Lab Activities</td>
<td>• Watch pre-lab lecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Take Pre-Lab Quiz</td>
</tr>
<tr>
<td>Assignments Due</td>
<td></td>
<td></td>
<td>• Project Work Lab Report (individual) and SPSS file (group) Due</td>
</tr>
<tr>
<td>Week 13</td>
<td>Immunohistochemistry (IHC) II</td>
<td>Pre-Lab Activities</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------------</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>Nov 18</td>
<td>Project Work IV</td>
<td>• Imaging and analysis of IHC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Finish any project experiments</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assignments Due</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Poster draft due</td>
<td></td>
</tr>
<tr>
<td>Week 14</td>
<td>Thanksgiving Break</td>
<td>No Class!</td>
<td></td>
</tr>
<tr>
<td>Nov 25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 15</td>
<td>Project Presentations and Research Celebration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec 2</td>
<td></td>
<td>• PowerPoint slides AND Poster due to Blackboard before class</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Submit Project Title to Mason Impact</td>
<td></td>
</tr>
</tbody>
</table>

Self and peer evaluation form and lab notebooks due by Friday 12/3 at 11:59pm

NOTE: This schedule is subject to change at any time. You are responsible for all announcements and syllabus modifications made in class each week whether you are present or not. Project work is in blue.