GGS 787: Scientific Data Mining for Geoinformatics Syllabus is not final on the course schedule

Instructor: Ruixin Yang

Exploratory Hall 2409, Tel: 993-3615, E-mail: ryang@gmu.edu

Time & Place: Wednesdays 4:30-7:10pm, Exploratory Hall 2103

Office Hours: by appointment (Zoom Meeting: https://gmu.zoom.us/j/4655943637).

Textbook:

- Required (**Primary**): Tan, Pang-Ning, Michael Steinbach, [Anuj Karpatne] and Vipin Kumar, "Introduction to Data Mining," 2006 (1st Edition), Addison-Wesley; 2019 (2nd Edition), Pearson. Online Information
- Required (*Secondary*): Han, Jiawei, Micheline Kamber, and [Jian Pei], "Data Mining: Concepts and Techniques," 2006 (2nd Edition); 2011 (3rd Edition, PDF); 2022 (4th Edition), Morgan Kaufmann.

GMU Catalog Entry:

GGS 787 - Scientific Data Mining for Geoinformatics (Credits: 3)

Covers specialized data mining algorithms, geoscience data models, and data information systems. Emphasis on domain-specific data mining algorithms suitable for spatial data and spatio-temporal data with geoscience and geoinformatics applications. Introduces real geoscience data mining applications in detailed applications.

Prerequisites: Competency in programming at the level of CSI 601-607 or permission of instructor.

Goals and Objectives (Course Overview):

To introduce basic data mining concepts and algorithms, software implementations for data mining, and applications in geoscience and geoinformatics. Both understanding and the implementation of the certain mining methods will be required.

Learning Outcomes:

After successful completion of this course,

- 1. Students will understand basic data mining concepts and major algorithms;
- 2. Students will be able to articulate and effectively communicate concepts and ideas related to Data Mining to experts, non-experts, and other professionals in a work environment;
- 3. Students will have the ability to appropriately apply the knowledge acquired in the course for various hypothetical and real-world data mining tasks, thus being able to mine new and useful information;
- 4. Students will be able to properly interpret data mining results.

Course Web Site: Canvas, the University's enterprise learning management system at https://canvas.gmu.edu/ (or https://lms.gmu.edu/). You must use the system for accessing course materials/assignments and for the final project submission.

Computing Requirements: No specific statistical package/tool/programming will be required for general assignments and the final project in this course. The instructor will use Matlab in most cases. Specific assignments may be given associated with specific tool(s).

GGS787-Syllabus Fall 2024 Page 1 of 5

References:

References will be added during the semester. Almost all of the reference materials (or links) will be available through the Mason Canvas System with the course materials.

Grading Policy:

Homework Assignments: 60% Final Project 40%

Total 100% (Letter grades based on both absolute and relative numbers)

Notes on Assignments:

- If multiple files are involved, the assignments will be distributed in .7z (zipped). If you need, you can check Mason ITS site at https://its.gmu.edu/service/software-listing-7-zip/ for installing the software on your computer.
- Assignments should be submitted only through the Assignment submission section of the Canvas system
 DO NOT email assignments directly to the instructor.
- It is expected that your submission will be in either PDF or Word format.
- Please make sure you have a backup of all the materials you submit.
- Please make sure to put your name with your assignment, and use your name or other identification information for your file names.
- If more than one files need to be submitted, you should submit a single **ZIP** file (such as the .7z) containing all the assignment files. In that case, it is strongly suggested that you put all the files into a folder and name the folder with your identity.
- The grace time is the noon of the following day after the due day. Submission after the grace time may result in losing of points, 10% per day for the first two days. No grading for submission later more than 2 days.
- Different weights may be applied to assignments in the final points calculation (unlikely).

The followings are university wide required information from Office of the Provost:

UNIVERSITY POLICIES

- University Catalog: The University Catalog, http://catalog.gmu.edu, is the central resource for university policies affecting student, faculty, and staff conduct in university academic affairs. Other policies are available at http://universitypolicy.gmu.edu/. All members of the university community are responsible for knowing and following established policies.
- Generative-AI (GenAI) Tools: Use of GenAI tools will sometimes be in alignment with the learning outcomes for this course. It is expected that the GenAI for this course is limited. If used, one should follow the fundamental principles of the <u>Academic Standards</u>. This includes being honest about the use of these tools for submitted work and including citations when using the work of others, whether individual people or Generative-AI tools. When meeting the outcome requires original human action, creativity or knowledge, AI tool use would not align with the stated course goals.
- Campus Closure or Emergency Class Cancellation/Adjustment Policy: If the campus closes, or if the class meeting needs to be canceled or adjusted due to weather, students should check the university announcement. If the class meeting needs to be canceled or adjusted due to other reasons, an announcement should be sent out via Canvas for updates on how to continue learning and for information about any changes to events or assignments.
- **Mason Email Accounts:** Students must use their MasonLive email account to receive important University information, including communications related to this class. I will not respond to messages

GGS787-Syllabus Fall 2024 Page 2 of 5

- sent from or send messages to a non-Mason email address about the course following the university policy. See http://masonlive.gmu.edu for more information on Mason Email System.
- Communication Policy: The preferred individual communication mechanism with me is email. In addition, I created the "Ask the Instructor" thread in the Discussion Board for you to ask common questions. I will check the CANVAS on daily basis and try to respond on posted questions. For email communications, I will try to respond in one business day (24 hours or a little more) during weekdays and 1-2 days during weekends. Please include "GGS 787" in your subject line to start a new email.
- Full Mason Common Course Policies.

OTHER USEFUL CAMPUS RESOURCES:

- WRITING CENTER: Johnson Center, Room 227E; Phone: 703-993-1200; Email: wcenter@gmu.edu; http://writingcenter.gmu.edu
- UNIVERSITY LIBRARIES "Ask a Librarian." http://library.gmu.edu/ask
- Counseling and Psychological Services (CAPS): (703) 993-2380; http://caps.gmu.edu
- University Calendar: Details regarding the current Academic Calendar. <u>Calendars | Office of the University Registrar | George Mason University (gmu.edu)</u>

GGS787-Syllabus Fall 2024 Page **3** of **5**

Tentative Course Schedule (Contents):

The course contents and schedule are "under construction." Therefore, the list below should be considered as a table of course contents instead of schedule. The assignment given and due dates will be adjusted accordingly. All efforts will be made to cover as much topics below as possible. (Last modified on Tuesday, August 26, 2025)

Week 1: Introduction (Data Science and Data Mining)

- Syllabus
- Introduction to Data Science
- Introduction to Data Mining
- Reading Assignment: Chapter 1
- HW1 given

Week 2: Data Issues

- Attribute Types
- Data Models in Geoscience
- Data Quality
- Reading Assignment: Sections: 2.1, 2.2

Week 3: Data Preprocessing

- Data Preprocessing
- Measures of Similarity and Dissimilarity
- Project Topic due (9/10)
- Reading Assignment: Sections: 2.3, 2.4

Week 4: Association Analysis (Association Rules) Part 1

- Basic Concepts
- Compact Presentation
- Rule Generation
- Evaluation of Association Patterns
- Special Topics
 - Skewed support patterns
 - Continuous attributes
 - Sequential patterns
- Reading Assignment: Sections: Chapter 5 except for section 5.6

Week 5: Association Analysis (Association Rules) Part 2

- Special Topics
 - Skewed support patterns
 - Continuous attributes
 - Sequential patterns
- Geoscience Data Mining Applications I: Tropical Cyclone Intensity
 - SHIPS Model and Database
 - Intensity Change of Tropical Cyclones
 - Rapid Intensification of Tropical Cyclones
 - Future Research: RI Prediction Based on Data Mining Results
- Reading Assignment: Sections: 6.2, 6.4; Supplementary Materials

Week 6: Cluster Analysis

GGS787-Syllabus Fall 2024 Page **4** of **5**

- Basic Concepts
- K-means
- Agglomerative Hierarchical Clustering
- Other Clustering Algorithms (ENVI Built-in)
- Cluster Evaluation
- Reading Assignment: Sections: 8.1-8.3, 8.5

Week 7: Advanced Clustering Algorithms and Applications

- Density-Based Clustering
- Geoscience Data Mining Applications III:
- Reading Assignment: Sections: 9.1, 9.3, 9.4

Week 8: Geoscience Data Mining Applications II: Clustering

- Concepts of Content-Based Search
 - Methods and Applications
- Mining Climate Indices (Spatio-Temporal)
- Reading Assignment: Supplementary Materials

Week 9: Classification: Part 1: Basics

- Basic Concepts
- Decision Trees Induction
 - Hunt's Algorithm
 - Optimal split values, Measures of impurity (Gini index, entropy, etc.)
- Project outline due (10/22)
- Reading Assignment: Sections 3.1-3.3

Week 10: Classification: Part 2: Issues and Evaluation

- Issues in classifications
- Basic Evaluation
- Reading Assignment: Sections 3.4-3.9

Week 11: Classification: Part 3: Alternative Techniques

- Rule-Based Classifier
- Nearest-Neighbor classifiers
- Bayesian Classifiers
- Reading Assignment: Sections: 4.1-4.5
- Reading Assignment: Sections 5.1-5.3

Week 12: Classification: Part 4: Alternative Techniques

- Support Vector Machine (SVM)
- Classification evaluation measures, more
- Reading Assignment: Sections 4.6, 5.5-5.7

Week 13: Classification: Part 5: Applications

- Support Vector Machine (SVM)
- Classification evaluation measures, more
- Reading Assignment: Sections 4.6, 5.5-5.7

Week 14: Deep Learning Application

Week 15: Final Project Due (Exam Day, December 10, 2025)

GGS787-Syllabus Fall 2024 Page 5 of 5