Math 301-DL1 Number Theory

George Mason University

Fall 2021 Syllabus

Course Description

Learning Objectives: To understand and make use of the concepts of prime numbers, congruences, multiplicative functions, and cryptology, and to develop general mathematical skills.

Prerequisite: Completion of 6 hours of MATH.
Textbook: Rosen, Elementary Number Theory and its Applications, 6th Edition, Pearson, 2010
Course Modalities: All online, half asynchronous, and half synchronous.

Course Meetings:

- Synchronous classes: Thursdays, 1:30-2:45pm, Zoom
- Asynchronous learning and course home page: Blackboard, https://mymasonportal. gmu.edu/

Instructor Information

Name: Dr. Kirsch (she/her/hers)
Student Office Hours: Tuesdays 1:30-2:45pm, or by appointment, on Zoom
Email Address: rkirsch4 @ gmu.edu

Grading and Course Requirements

The grading rubric for each problem is
3 Demonstrates full achievement of the learning objective
2 Demonstrates significant progress toward the learning objective
1 Demonstrates some progress toward the learning objective
0 Does not demonstrate progress toward the learning objective
Letter grades in the course will be determined by the percentage of points you have earned and the following table.

$\mathrm{A}+$	A	$\mathrm{A}-$	$\mathrm{B}+$	B	$\mathrm{B}-$	$\mathrm{C}+$	C	$\mathrm{C}-$	D	F
$97-100$	$93-96$	$90-92$	$87-89$	$83-86$	$80-82$	$77-79$	$73-76$	$70-72$	$60-69$	$0-59$

Course components and point values: Subject to change, but only to your advantage.
Syllabus and Course Policies Quiz 6
Community and Collaboration Portfolio 18
Preparation, Participation, and Practice Portfolio 18
Reflection Homework 14
Chapters 1, 3:
Weeks 1-4 Quizzes 24
Exam $1 \quad 24$
Chapters 4, 6:
Weeks 6-9 Quizzes 24
Exam $2 \quad 24$
Chapters 7, 8:
Weeks 11-14 Quizzes 24
Exam $3 \quad 24$
Total points in course
200
Retake opportunities: You may complete at most one retake problem each week to replace your score on a quiz or exam problem corresponding to the same learning objective.

Course Calendar

Week	Course Topics	Relevant Problems
Week 1 August 24-30	1.3 Mathematical Induction 1.5 Divisibility	$\begin{aligned} & 1.3 \# 2,3,4,6,7,8,9,10,12,13, \\ & 14,20,21,24,26,27,36 \\ & 1.5 \# 1-22,26,27,28,30,31,36-43 \end{aligned}$
Week 2 August 31 - September 5 Labor Day September 6	3.1 Prime Numbers 3.2 The Distribution of Primes 3.3 Greatest Common Divisors and their Properties	$\begin{aligned} & 3.1 \# 1,3,6,7,8,9,12,14,15,16 \text {, } \\ & 17,18,19,26,27,28 \\ & 3.2 \# 1,3,4,5,6,7,8,9,12,13 \text {, } \\ & 14,18 \\ & 3.3 \# 1,2,3,4,5,6,7,8,9,10,11 \text {, } \\ & 12,13,14,17,18,19,20,25,27,31 \end{aligned}$
Week 3 September 7-13	3.4 The Euclidean Algorithm 3.5 The Fundamental Theorem of Arithmetic, Proof	3.4 \#1-10, 14 3.5 Understand and be able to explain each step of the proof.
Week 4 September 14-20	3.5 The Fundamental Theorem of Arithmetic, Applications 3.6 Factorization Methods and Fermat Numbers 3.7 Linear Diophantine Equations	$\begin{aligned} & 3.5 \# 1-5,6,7,8,9,10,11,28,29 \text {, } \\ & 30,31,34,35,36 \\ & 3.6 \# 1-4 \\ & 3.7 \# 1-10 \text { odd, } 13-18 \text { odd } \end{aligned}$
Week 5 September 21-27	Chapter 1: The Integers and Chapter 3: Primes and Greatest Common Divisors Catch-Up, Review, and Exam 1	See Weeks 1-4
Week 6 September 28-October 4	4.1 Introduction to Congruences 4.2 Linear Congruences	$\begin{aligned} & 4.1 \# 1-4,6,7,8,9,10-14,16,17 \text {, } \\ & 20-23,25,27,29,31,32,34,41,42 \\ & 4.2 \# 1-15 \text { odd, } 19 \end{aligned}$
Week 7 October 5-10	4.3 Sun Zi's Remainder Theorem 6.1.1 Wilson's Theorem	$\begin{aligned} & 4.3 \# 1-12,16,17,20,21 \\ & 6.1 \# 1-22 \text { odd, } 27,29,34,41 \end{aligned}$
Week 8 October 13-18	6.1.2 Fermat's Little Theorem	6.1 \#1-22 odd, 27, 29, 34, 41
Week 9 October 19-25	6.2 Pseudoprimes 6.3 Euler's Theorem	$\begin{aligned} & \hline 6.2 \# 1-19 \text { odd } \\ & 6.3 \# 1-12 \text { odd, } 17,19 \end{aligned}$
Week 10 October November 1	Chapter 4: Congruences and Chapter 6: Some Special Congruences Catch-Up, Review, and Exam 2	See Weeks 6-9
Week 11 November 2-8	7.1 The Euler Phi-Function 7.2 The Sum and Number of Divisors	$\begin{aligned} & 7.1 \# 1-8,12,13,14,17,19 \\ & 7.2 \# 1-4,7-14,20,21 \end{aligned}$
Week 12 November 9-15	7.3 Perfect Numbers and Mersenne Primes 7.4 Mobius Inversion	$\begin{aligned} & 7.3 \# 1-14,15 \\ & 7.4 \# 1-6,10,13,14,19,21 \end{aligned}$
Week 13 November 16-22	8.1 Character Ciphers 8.3 Exponentiation Ciphers	$\begin{aligned} & 8.1 \# 1-14 \\ & 8.3 \# 1-6 \end{aligned}$
Week 14 November 23, 29	8.4 Public Key Cryptography	8.4 \#1-8, 11-15
Week 15 November December 5	Chapter 7: Multiplicative Functions and Chapter 8: Cryptology Catch-Up and Review	See Weeks 11-14
December 8-13	Exam 3	See Weeks 11-14

