Olympiad 2023
 Practice Problems

1. Find the sum of the real numbers a and b for which

$$
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x+1}+a x\right)=b
$$

(Hint: For what value of a is this limit finite?)
2. Let the function $f(x)$ be defined by

$$
f(x)=\left\{\begin{aligned}
x^{3} \sin (1 / x), & x \neq 0 \\
0, & x=0
\end{aligned}\right.
$$

Show that $f(x)$ is differentiable at 0 and find $f^{\prime}(0)$. (Hint: Use the limit definition for the derivative.)
3. Write an equation for the tangent line to the graph of $f(x)=\left(\frac{x+1}{x-1}\right)^{2}$ at the point at which $x=0$.
4. Show that

$$
\frac{d}{d x}\left(\ln \frac{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}\right)=\frac{2}{x \sqrt{1-x^{4}}}
$$

(Hint: Use properties of the logarithm to simplify your work.)
5. Find $y^{\prime}(0)$, given that $e^{y}+x y=e$.
6. Let $f(x)=\frac{\ln (1+x)}{x}$, for $x>0$.
(a) Show that $f(x)$ is strictly decreasing on $(0, \infty)$.
(b) Show that $f(x)<1$ for $x>0$.
7. Let $f(x)=x \sqrt{3-2 x}$ for $x<\frac{3}{2}$. Find the real numbers a, b, c for which the function $F(x)=\left(a x^{2}+b x+c\right) \sqrt{3-2 x}$ is an antiderivative for $f(x)$ for $x<\frac{3}{2}$.
(Hint: It is easier if you use integration rather than differentiation.)
8. Find the critical points and identify the relative and the absolute extrema for the function defined by $f(x)=\int_{0}^{x} e^{t^{2}}\left(t^{3}-3 t+2\right) d t$, for $x \in R$.
(Hint: You will need the Fundamental Theorem of Calculus.)
9. Find

$$
\lim _{x \rightarrow \infty}\left(\sin \frac{1}{x}+\cos \frac{1}{x}\right)^{x}
$$

(Hint: L'Hôpital's rule)
10. Let the function $f(x)$ be defined by

$$
f(x)=\left\{\begin{aligned}
a x^{2}, & x \leq 1 \\
\ln x+x, & x>1,
\end{aligned}\right.
$$

where a is a constant for which $f(x)$ is continuous at 1 . Find the area of the plane region bounded by the curves $y=f(x), y=0, x=0$, and $x=e$.
11. Evaluate $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{n} \cos (k / n)$.
(Hint: Riemann sums)
12. Evaluate $\int \frac{3 \cos x}{\sin ^{2} x-\sin x-2} d x$.
13. Evaluate

$$
\int x^{5} \sqrt{1-x^{3}} d x
$$

14. (a) Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\sin (2 x)}{1+\cos ^{2} x} d x$.
(b) Let $f(x)$ be a function that is continuous on $[0,1]$. Prove that

$$
\int_{0}^{\pi} x f(\sin x) d x=\frac{\pi}{2} \int_{0}^{\pi} f(\sin x) d x
$$

(Hint: Use $x=\pi-u$.)
(c) Use the result from part (b) to evaluate $\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$.
15. Determine whether the integral $\int_{0}^{\infty} \frac{1}{x\left(x^{2}+1\right)} d x$ is convergent and find its value in case of convergence.
16. Let S be a sphere of center O and radius R, let P be a point on S. Find the volume of the spherical cap formed when we cut off the sphere S by the plane α which is perpendicular to the radius $O P$ and intersects it at the point H, where $O H=h, 0<h<R$.
17. Let the sequence I_{n} be defined as follows:

$$
\begin{gathered}
I_{0}=\int_{0}^{1} e^{-x} d x \\
I_{n}=\int_{0}^{1} x^{n} e^{-x} d x
\end{gathered}
$$

(a) Find I_{0}.
(b) Use integration by parts to show that

$$
I_{n}=-\frac{1}{e}+n I_{n-1}
$$

(c) Show that for $x \in[0,1]$,

$$
\frac{x^{n}}{e} \leq x^{n} e^{-x} \leq x^{n}
$$

(d) Integrate the inequality above to show that

$$
\frac{1}{e(n+1)} \leq I_{n} \leq \frac{1}{n+1}
$$

(e) Using the reduction formula for I_{n}, we can show that

$$
I_{n}=\frac{n!}{e}\left[e-\left(1+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!}\right)\right] .
$$

How can you use the results from the previous parts to find

$$
\lim _{n \rightarrow \infty} I_{n}
$$

and

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!}\right) ?
$$

18. Let $f(x)=x \tan ^{-1} x$ and $g(x)=\ln \left(1+x^{2}\right)$. Prove that for every $x \in$ $[0,1], f(x) \geq g(x)$ and then find the area of the region bounded by $y=$ $f(x), y=g(x), x=0$, and $x=1$.
(Hint: To prove the given inequality, consider the difference of the two functions and study the sign of its first and second derivatives on the given interval.)
