GEORGE MASON UNIVERSITY COLLEGE OF SCIENCE BIOLOGY DEPARTMENT SEMINAR Fall 2015

Charbel Moussa, Department of Neurology, Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, Georgetown University Medical Center

"Is tau the how behind Alzheimer's?"

Tau is an axonal protein that binds to and regulates microtubule function. Hyper-phosphorylation of Tau reduces its binding to microtubules and it is associated with β -amyloid deposition in Alzheimer's disease. Paradoxically, Tau reduction may prevent β -amyloid pathology, raising the possibility that Tau mediates intracellular A β clearance. The current studies investigated the role of Tau in autophagic and proteasomal intracellular A β 1-42 clearance and the subsequent effect on plaque deposition.

Tau deletion impaired A β clearance via autophagy, but not the proteasome, while introduction of wild type human Tau into Tau^{-/-} mice partially restored autophagic clearance of A β 1-42, suggesting that exogenous Tau expression can support autophagic A β 1-42 clearance. Tau deletion impaired autophagic flux and resulted in A β 1-42 accumulation in pre-lysosomal autophagic vacuoles, affecting A β 1-42 deposition into the lysosome. This autophagic defect was associated with decreased intracellular A β 1-42 and increased plaque load in Tau^{-/-} mice, which displayed less cell death. Nilotinib, an Abl tyrosine kinase inhibitor that promotes autophagic clearance mechanisms, reduced A β 1-42 only when exogenous human Tau was expressed in Tau^{-/-} mice. These studies demonstrate that Tau deletion affects intracellular A β 1-42 clearance, leading to extracellular plaque.

TUESDAY September 15, 2015 3:00-4:15 PM JC Meeting Room F