Climate Dynamics 440: Climate Dynamics (Introduction to the Physical Climate System)

Course Syllabus Spring 2020

Course Instructor: David M. Straus

Contacts: D. Straus dstraus@gmu.edu

Map of Annual Mean Precipitation (ECMWF)

Zonal Mean of Potential Temperature ECMWF

Class location: Research Hall Room 121 (Climate Dynamics Lab)

Class time: Tuesday - Thursday 3:00 PM to 4:15 PM

- First class: Tuesday Jan 21
- Mid-Term: TBD
- Spring break: Tuesday Mar 10, Thursday Mar 12
- Last class: Tuesday May 5
- Final Exam: Thursday May 7 1:30 AM - 4:15 PM

Primary Required Reading (Course Notes):
http://mason.gmu.edu/~dstraus/CLIM_610_syllabus.htm

Primary Reference Books:
Supplementary Reading:

 - ISBN-10: 0-12-615160-1
 - ISBN-10: 3-540-42638-8

Course Goals and Student Learning Outcomes

- Acquire knowledge of the basic physics principals that govern weather and climate.
- Understand the overall energy balance of the earth-atmosphere-ocean system.
- Be able to articulate the reasons for global atmosphere and ocean transport of energy.
- Become familiar with the atmospheric structures that transport energy and moisture.
- Acquire basic skills for examining current data sets of weather and climate variables.
- Develop the ability to read basic journal papers on the subject, and report the main findings.

Student Work Components

1. Mid-Term Exam = 20% percent of grade
2. Final Exam = 20% percent of grade
3. Four Homework Sets = 30% percent of grade
4. Journal Paper Presentations = 20% of grade
5. Class Participation = 10% of grade

Homework Policy

Course Topics

(Note: Content of lectures subject to updating!)

1. Overview Lecture
2. Global Energy Balance
3. Satellite Radiation Maps
4. Planck Function and Blackbody Radiation
5. Radiation and Climate Part 1
6. Introduction to Temperature and Ideal Gas
7. Radiation and Climate Part 2
8. Short Wave Radiation Distribution
9. Radiative-Convective Equilibrium
10. Thermodynamics Part 1
 Enlarged Figures for Thermodynamics Part 1
 Entropy and the First Law
11. Thermodynamics Part 2
 Thermodynamics Problem Set 2
12. Thermodynamics Notes Part 1
13. Thermodynamics Notes Part 2
14. Thermodynamics Figures 2
15. Ocean Circulation and Climate (Dr. Barry Klinger)
17. Hadley and Ferrel Cells
18. Energy Transport
20. Rotational vs. Divergent Flow
21. Isentropic Hadley Cell
22. Transient Fluctuations
23. A direct look at Baroclinic Transients
24. The Hydrological Cycle
25. The Indian Monsoon
26. Predictable Component Analysis
27. Extra-Tropical Energy Flux
28. Oceans and Climate
29. Paleoclimate: Observations, Theory and Modeling;
30. Brief Review

Academic Integrity

George Mason is an Honor Code university. The principal of academic integrity is taken very seriously and violations are treated gravely. When you as the student are responsible for a task, you will perform that task. When you rely on someone else's work in an aspect of the performance of that task, you will give full credit in the proper, accepted form. The homeworks and exams in this course are designed to be undertaken independently. You may discuss your ideas with others and conference with peers on drafts of the work. But you are responsible for making certain that the work you hand in is your own. Please see the Academic Integrity website.