GGS 650 Introduction to GIS Programming and Algorithms 2017 Fall Syllabus

Tuesdays: 7:20 - 10:00 PM, Exploratory Hall 2310

Instructors: Chaowei Yang Email: cyang3@gmu.edu Office: Exploratory Hall 2208, 2211 Office Hours: T: 3:00-6:00 PM

Course Description

How to find the centroid, perimeter, or area of a polygon? How can the system tell that the two lines cross each other? How can the system determine if the two polygons overlap and by how much? How are geographical surfaces represented? How to derive their properties (intervisibility, aspect, etc.)? This course addresses these fundamental GIS questions.

In this course, we learn to program using object-oriented languages, such as Python (an integrated programming language for ArcGIS). A comprehensive programming training process including computer programming, programming syntax, data types, data structure, control structures, and an integrated programming environment (such as Python & JBuilder) will be introduced within 1/2 of the whole course.

We will also examine several technical aspects of GIS related to algorithms. They include some fundamental concepts in computational geometry, computer graphics, common analytical algorithms using in GIS environment, and features represented by points, lines, polygons, and volumetric objects. Algorithms related to surface modeling will also be addressed. ArcMap and related extensions from ESRI will be used as examples for interpreting the internal GIS functions, and provide commercial software environment for programming. The course will provide hands-on experience by implementing some algorithms. Instructors support the programming languages of Python, but students can select any programming language of their choice.

A term project and some short homework will help student develop the skill and capability to understand spatial data structure and implement spatial algorithms. Students will also develop a solid and in-depth understanding of the geographic system internal organization and operations in related to spatial data handling and analysis. Potentially students will develop the ability to solve geographic related problems at the modeling & algorithm level.

Class will be given PowerPoint slides before a class meeting. Relevant hand-on exercises in class will be scheduled as necessary.

University Honor Code is strictly enforced.

Prerequisite

Any introductory GIS course, and blind typing (we will do a lot of programming class exercises so we can not wait for typing).

References

The following books and materials will serve as references:

- 1. Chaowei Yang et al., 2017. Intro to GIS Programming and Fundamentals with Python and ArcGIS, CRC Press, 302pp.
- 2. Python: the python tutorial from the help doc of Python GUI
- 3. ArcGIS: Geoprocessor document
 - a. Geoprocessor
 - b. Geoprocessor Reference Model
- 4. ArcToolBox

Grading

- All homeworks should be submitted before class on the due date.
- 10 Homework (60%) (Confirmation & Structural & Guided inquires coined here)
- Term Project (25%) and Presentation (5%) (Open Inquires coined here) e.g., Design and develop a program to support at least two basic GIS algorithms on geospatial data.
- Class Activity and Participation (10%)

Date	Торіс	Assignments
Aug 29, 2017	Lecture 1: Class overview and	Install ArcGIS;
Homework 1 given	Introduction to computer	Read book chapter 1;
	programming, review of basic	Work on Homework 1
	data models: point, line,	
	polygon.	
Sep 5, 2017	Lecture 2: Introduction to	Read book chapter 2;
Homework 1 due	Object-Oriented Programming	Work on Homework 2
Homework 2 given	using Python	
Sep 12, 2017	Lecture 3: Introduction to	Read book chapter 3;
Homework 2 due	language syntax, data types, and	Work on Homework 3
Homework 3 given	operations	
Sep 19, 2017	Lecture 4: Introduction to	Read book chapter 4;
Homework 3 due	language control structure	Work on Homework 4
Homework 4 & 5 given		
Sep 26, 2017	Lecture 5: Programming	Read book chapter 5;
Homework 4 due	Thinking and Vector Data	Work on Homework 5
	Visualization	
Oct 3, 2017	Lecture 6: Shape File Handling	Read book chapter 6;
Homework 5 due		Work on Homework 6

Homework 6 given		
Oct 10, 2017	Do not meet	
Oct 17, 2017	Lecture 7: Python Programming	Read book chapter 7;
Homework 6 due	Environment	Work on Homework 7
Homework 7 given		
Oct 24, 2017	Lecture 8: Vector Data	Read book chapter 8;
Homework 7 due	Algorithm	Work on Homework 8
Homework 8 given		
Oct 31, 2017	Lecture 9: ArcGIS programming	Read book chapter 9;
Homework 8 due		Work on Homework 9
Homework 9, 10 given		
Nov 7, 2017	Lecture 10: Raster Data: run	Read book chapter 10;
Homework 9 due	length encode, quadtree, area	Work on Homework 10
Project given	calculation, classification	
Nov 14, 2017	Lecture 11: Network Data:	Read book chapter 11
Homework 10 due	Network data maintenance,	
	Shortest path	
Nov 21, 2017	Lecture 12: Surface Data: DEM,	Read book chapter 12
	TIN, Contours, Slope, Aspect,	L L
	Flowing direction	
Nov 28, 2017	Lecture 13: Advanced topics	Read book chapter 13 & 14
	Project presentation	-
Dec 5, 2017	Project presentation	
Project report due		