# Ground-Based Light Curve Follow-Up Validation Observations of TESS Object of Interest TOI 5612.01

Andrew Zheng, Peter Plavchan

Department of Physics and Astronomy, 4400 University Drive MS 3F3, George Mason University, Fairfax, VA 22030, USA

#### Abstract

The primary objective of this paper was to provide one of the first confirmations and validations regarding the candidate exoplanet TOI 5612.01 discovered in 2022 by the transit method. All observations used in this study were from ground-based telescope observations at the George Mason University Observatory. Utilizing AstroImageJ to complete the necessary data processing steps, we plotted a light curve based on over a hundred sets of viable data. However, after analyzing the given processed and graphed data, we were unable to reach any conclusive decision regarding whether there was truly a transit for our data at our specific observation period. This paper aims to outline our methodology and analysis in reaching such a conclusion; we also provide suggestions for future research.

## 1. Introduction

Ever since the dawn of humankind, humans have been fascinated by the potential for extraterrestrial life and the unknowns of our enormous universe. The reality is that the Earth is only a small fraction of our universe, and much of the universe requires further study. The rapid growth in our world's population directly challenges the limited supply of materials on Earth. Thus, scientists aim to explore exoplanets, planets that orbit other stars outside of our universe, to see whether such planets are habitable, or if they can provide any context for habitable regions other than Earth.

The NASA TESS (Transiting Exoplanet Survey Satellite) mission launched on April 18 2018 to explore the unknown planets outside of our solar system, exoplanets. This mission is a continuation of the Kepler mission. The TESS and Kepler missions use the transit method to identify, confirm, or verify exoplanets. The transit methodology works when the exoplanet's host

star's light is slightly obscured due to the exoplanet itself orbiting the star, leading to a dip in light flux. This dip in light can often mean the identification of a transit.

Being only about three decades since the original discoveries of exoplanets in our universe, humankind has uncovered more than five thousand exoplanets ever since (*How Many Exoplanets Are There?*, n.d.). In addition, there are several more thousands of planets classified as exoplanet candidates. The TESS Object of Interest 5612.01, or TOI 5612.01, is the candidate exoplanet determined by TESS that we are investigating. Since the discovery of TOI 5612.01 in 2022, there has been very limited literature published in terms of truly verifying if TOI 5612.01 is an exoplanet. This, in turn, will be one of the first ground-based light curve follow-ups on TOI 5612.01. Thus, this paper aims to provide deeper context into TOI 5612.01 and to potentially offer a conclusion based on our observations and analysis.

To provide the necessary follow-ups on TOI 5612.01, we analyzed the observations made by George Mason University Observatory on February 20, 2022. The radius of this planet relative to the Earth is 8.0. The orbital period of this planet is 7.13 days. Our ultimate goal is to investigate whether a transit truly occurs on the expected star at the expected time, with the expected duration and depth.

#### 2. Observations

We referenced all our collected data on TOI 5612.01 from the George Mason University Observatory on February 20, 2024. Section 2.1 will go in-depth about the specific exoplanet candidate properties and its host star. Section 2.2 will go in-depth about the specific observations we made.

#### 2.1 Properties of TOI 5612 01 and TOI 5612

TOI 5612.01 has an equilibrium temperature of 759 kelvins. The host star's stellar effective temperature is 4701.56 kelvins. The period of TOI 5612.01 is 7.13 days. The transit depth is 7.5 ppt. The predicated ingress and egress times of TOI 5612.01 are 10361.6274 and 10361.7445, respectively. The RA and DEC of our target star are 11:29:38.655 and +38:56:11.4, respectively

#### 2.2 Our Observations

We collected a total of 264 science images with an exposure of 90 seconds. We also had a folder of ten flat images, with exposures of 3.5 seconds. Additionally, there were two sets of ten dark images. One set was 90 seconds exposure, and one set was 3.5 seconds exposure. We used the R (red) filter for our telescope observations.

## 3. Analysis

This section presents several figures we encountered throughout our analysis, providing our commentary and displaying our methods in data processing and reduction. We used AstroImageJ throughout this process, from the initial data reduction and plate solving to the multiple aperture photometry and light curve analysis.

#### 3.1 Initial Data Reduction and Platesolving

To officially begin the analysis, we analyzed every one of our 264 science images, checking for bad quality such as excessive smearing or no stars. Figure 1 is a great example of a bad science image, with barely any visible stars and excessive smearing. There were 108 viable images to reduce and platesolve towards the end, meaning 156 bad images were removed.



Figure 1: Example of a Bad Science Image (Generated from AstroImageJ)

Using AstroImageJ (CCD Data Processor Tool), we created a master dark file and a master flat file in our dark and flat folders. This master file will be used when we reduce our science images. After this step, we could start the reduction and plate solving by importing our images into AstroImageJ.

We used the master dark and flat files with similar exposure times when creating our reduced and plate-solved science images. After inputting RA and DEC coordinates of my target star and completing all the necessary modifications in AstroImageJ, we were ready to start the plate-solving process. The plate-solving process ultimately creates an image with the coordinates of the target star-this will be useful for aperture photometry later on.

# <u>3.2 Aperture Photometry</u>

Using our RA and DEC coordinates, 11:29:38.655 and +38:56:11.4, respectively, we located our target star. We first opened up a seeing profile on our target star to check on some measurements such as radius (Figure 2). We adjusted our aperture settings according to the values shown in the seeing profile. We created a radius of 2.5 around our target star and imported a Gaia star file onto the target star (Figure 3). The purpose of the green stars is to assess the possibility of a near eclipsing binary near the target star. This will later be used for false-positive analysis.



Figure 2: Seeing Profile of Target Star (Generated from AstroImageJ)

 $\Box$   $\times$ 



Figure 3: Aperture Locations (Generated from AstroImageJ)

We began multiple aperture photometry using the tool from AstroImageJ. A measurement table was generated shortly after we began multiple aperture photometry (Figure 4). The data in this table ultimately generates our light curve plot later on which will give us important information on transits.

| Heasurer                      | ments in Table2.tbl                                          |                 |                    |                    |                    |                                       |                     |                    |                    |           |         |                     |                      | - 🗆 X                |
|-------------------------------|--------------------------------------------------------------|-----------------|--------------------|--------------------|--------------------|---------------------------------------|---------------------|--------------------|--------------------|-----------|---------|---------------------|----------------------|----------------------|
| File Edit Font Results Filter |                                                              |                 |                    |                    |                    |                                       |                     |                    |                    |           |         |                     |                      |                      |
| Label                         |                                                              | slice Saturated | J.D2400000         | JD_UTC             | JD_SOBS            | HJD_UTC                               | BJD_TDB             | AIRMASS            | ALT_OBJ            | CCD-TEMP  | EXPTIME | RAOBJ2K             | DECOBJ2K             | FWHM_Mean            |
| 1 TOI561                      | 2-01_90.000s_R-0019_out1.fts<br>2-01_90.000r_R-0021_out1.ftr | 1 0.0           | 60361.58516248828  | 2460361.5851624883 | 2460361.584641655  | 2460361.589970663                     | 2460361.5908000343  | 1.6309231315083277 | 37.725569960655164 | -29.90625 | 90.0    | 11.4940708333333332 | 38.9364999999999995  | 11.367724424901976 ^ |
| 3 TOI561                      | 2-01 90.000s R-0022 out1.fts                                 | 3 0.0           | 60361.588842140976 | 2460361.588842141  | 2460361.5883213077 | 2460361.5936503434                    | 2460361.5932530310  | 1.5970552043189117 | 38.67754842452284  | -29.9375  | 90.0    | 11.4940708333333332 | 38.93649999999999999 | 11.073975346303785   |
| 4 TOI561                      | 2-01_90.000s_R-0023_out1.fts                                 | 4 0.0           | 60361.59006875008  | 2460361.59006875   | 2460361.589547917  | 2460361.5948769613                    | 2460361.595706332   | 1.586143202996095  | 38.995696107932865 | -29.90625 | 90.0    | 11.494070833333332  | 38.9364999999999995  | 11.331755095976144   |
| 5 TOI561                      | 2-01_90.000s_R-0026_out1.fits                                | 5 0.0           | 60361.59375033574  | 2460361.5937503357 | 2460361.5932295024 | 2460361.5985585744                    | 2460361.599387945   | 1.554472276002827  | 39.952961533836366 | -29.96875 | 90.0    | 11.4940708333333332 | 38.9364999999999999  | 11.510146138406679   |
| 7 TOIS61                      | 2-01_90.000s_R-0027_0ut1.fts                                 | 7 0.0           | 60361.596204965375 | 2460361.5962049654 | 2460361.595684132  | 2460361.6010132222                    | 2460361.601842593   | 1.5342210059389558 | 40.593134320900575 | -29.9375  | 90.0    | 11.4940708333333332 | 38.93649999999999999 | 13.334330087456896   |
| 8 TOI561                      | 2-01_90.000s_R-0032_out1.fts                                 | 8 0.0           | 60361.60111678252  | 2460361.6011167825 | 2460361.600595949  | 2460361.6059250757                    | 2460361.606754446   | 1.4956532202135837 | 41.87865479991187  | -29.96875 | 90.0    | 11.494070833333332  | 38.9364999999999995  | 12.028800921897876   |
| 9 TOI561                      | 2-01_90.000s_R-0033_out1.fts                                 | 9 0.0           | 60361.60234467592  | 2460361.602344676  | 2460361.6018238426 | 2460361.6071529784                    | 2460361.6079823487  | 1.4864008891338036 | 42.20093638200502  | -29.9375  | 90.0    | 11.4940708333333332 | 38.9364999999999999  | 11.46405281074065    |
| 11 TOI561                     | 2-01_90.000s_R-0035_00t1.fts                                 | 11 0.0          | 60361.60602998827  | 2460361.6060299883 | 2460361.605509155  | 2460361.610838318                     | 2460361.611667688   | 1.459519037979628  | 43.170354019294955 | -29.9375  | 90.0    | 11.4940708333333332 | 38.9364999999999999  | 11.22577561516395    |
| 12 TOI561                     | 2-01_90.000s_R-0040_out1.fits                                | 12 0.0          | 60361.61093645822  | 2460361.610936458  | 2460361.610415625  | 2460361.615744824                     | 2460361.616574194   | 1.425694393899655  | 44.46585464412697  | -29.9375  | 90.0    | 11.494070833333332  | 38.9364999999999995  | 12.505656879684159   |
| 13 TOI561                     | 2-01_90.000s_R-0046_out1.hts<br>2-01_90.000s_R-0047_out1.hts | 13 0.0          | 60361.61829688633  | 2460361.6182968863 | 2460361.617776053  | 2460361.6231053066                    | 2460361.623934676   | 1.3788382236286116 | 46.419248228/28144 | -29.93/5  | 90.0    | 11.4940/08333333332 | 38.9364999999999999  | 23.4940303763596     |
| 15 TOI561                     | 2-01_90.000s_R-0048_out1.fts                                 | 15 0.0          | 60361.62075265031  | 2460361.6207526503 | 2460361.620231817  | 2460361.6255610883                    | 2460361.626390458   | 1.3641702518963583 | 47.073534444307334 | -29.9375  | 90.0    | 11.494070833333332  | 38.9364999999999995  | 11.383400867206998   |
| 16 TOI561                     | 2-01_90.000s_R-0058_out1.fts                                 | 16 0.0          | 60361.6330215279   | 2460361.633021528  | 2460361.6325006946 | 2460361.6378300563                    | 2460361.6386594255  | 1.2974164916014759 | 50.36022845355407  | -29.9375  | 90.0    | 11.4940708333333332 | 38.9364999999999995  | 11.416735204901366   |
| 17 TOIS61                     | 2-01_90.000s_R-0068_00t1.fts<br>2-01_90.000s_R-0069_out1.fts | 18 0.0          | 60361.64529246511  | 2460361.645292465  | 2460361.644771632  | 2460361.650101084                     | 2460361.6509304526  | 1.2403128292254149 | 53.6/503232452//34 | -29.9375  | 90.0    | 11.4940/08333333332 | 38,93649999999999999 | 10.913412282153766   |
| 19 TOI561                     | 2-01_90.000s_R-0070_out1.fts                                 | 19 0.0          | 60361.64774918975  | 2460361.6477491898 | 2460361.6472283565 | 2460361.6525578266                    | 2460361.653387195   | 1.2299142870552042 | 54.34172402816221  | -29.9375  | 90.0    | 11.494070833333332  | 38.9364999999999995  | 12.538886171963199   |
| 20 TOI561                     | 2-01_90.000s_R-0071_out1.fts                                 | 20 0.0          | 60361.64897662029  | 2460361.6489766203 | 2460361.648455787  | 2460361.653785266                     | 2460361.6546146343  | 1.224840022667784  | 54.6751787245702   | -29.9375  | 90.0    | 11.4940708333333332 | 38.9364999999999995  | 10.602094197921872   |
| 22 TOI561                     | 2-01_90.000s_R-0072_0011.fts                                 | 22 0.0          | 60361.650204398204 | 2460361.650204398  | 2460361.6509100692 | 2460361.6562395664                    | 2460361.65506424216 | 1.214930042836229  | 55.342639414024255 | -29.9375  | 90.0    | 11.4940708333333332 | 38,9364999999999999  | 13.029024697472549   |
| 23 TOI561                     | 2-01_90.000s_R-0074_out1.fts                                 | 23 0.0          | 60361.652657407336 | 2460361.6526574073 | 2460361.652136574  | 2460361.65746608                      | 2460361.6582954484  | 1.2100933891862053 | 55.67654507259009  | -29.9375  | 90.0    | 11.494070833333332  | 38.9364999999999995  | 12.553598410874798   |
| 24 TOI561                     | 2-01_90.000s_R-0080_out1.fts                                 | 24 0.0          | 60361.66001653951  | 2460361.6600165395 | 2460361.659495706  | 2460361.664825266                     | 2460361.665654634   | 1.1826272144402454 | 57.6847080439629   | -29.9375  | 90.0    | 11.4940708333333332 | 38.9364999999999995  | 11.94865496746738    |
| 26 TOI561                     | 2-01_90.000s_R-0082_0011.fts                                 | 26 0.0          | 60361.66369791655  | 2460361.6636979165 | 2460361.6631770832 | 2460361.66850667                      | 2460361.669336038   | 1.1698429870219484 | 58.69218492955701  | -29.96875 | 90.0    | 11.4940708333333332 | 38.9364999999999999  | 10.077903083061091   |
| 27 TOI561                     | 2-01_90.000s_R-0084_out1.fits                                | 27 0.0          | 60361.66492465278  | 2460361.664924653  | 2460361.6644038195 | 2460361.6697334154                    | 2460361.6705627833  | 1.1657183481104187 | 59.02831585334713  | -29.9375  | 90.0    | 11.494070833333332  | 38.9364999999999995  | 10.976824015232713   |
| 28 TOI561                     | 2-01_90.000s_R-0085_out1.fts                                 | 28 0.0          | 60361.66615197901  | 2460361.666151979  | 2460361.6656311457 | 2460361.6709607504                    | 2460361.6717901183  | 1.1616580223490096 | 59.364810061958906 | -29.96875 | 90.0    | 11.4940708333333332 | 38.9364999999999999  | 10.155921048080858   |
| 30 TOIS61                     | 2-01_90.000s_R-0087_00t1.fts                                 | 30 0.0          | 60361.66983380774  | 2460361.6698338077 | 2460361.6693129744 | 2460361.674642606                     | 2460361.6754719736  | 1.149867098556907  | 60.37543532906585  | -29.96875 | 90.0    | 11.4940708333333332 | 38.93649999999999999 | 9.726303124046241    |
| 31 TOI561                     | 2-01_90.000s_R-0089_out1.fts                                 | 31 0.0          | 60361.671061354224 | 2460361.671061354  | 2460361.670540521  | 2460361.6758701615                    | 2460361.6766995294  | 1.1460631383670377 | 60.712770616666667 | -29.9375  | 90.0    | 11.494070833333332  | 38.936499999999995   | 10.756889413887725   |
| 32 TOI561                     | 2-01_90.000s_R-0090_out1.fts<br>2-01_90.000s_R-0091_out1.fts | 32 0.0          | 60361.672288773116 | 2460361.672288773  | 2460361.67176794   | 2460361.6770975892                    | 2460361.677926957   | 1.1423218879446584 | 61.05025955378176  | -29.9375  | 90.0    | 11.4940708333333332 | 38.9364999999999999  | 9.90263507365384     |
| 34 TOI561                     | 2-01 90.000s R-0092 out1.fts                                 | 34 0.0          | 60361.674743645824 | 2460361.674743646  | 2460361.6742228125 | 2460361.67955248                      | 2460361.6803818475  | 1.1350232348095166 | 61.72580292341993  | -29.9375  | 90.0    | 11.4940708333333332 | 38.9364999999999999  | 10.277655594648055   |
| 35 TOI561                     | 2-01_90.000s_R-0093_out1.fts                                 | 35 0.0          | 60361.675971527584 | 2460361.6759715276 | 2460361.6754506943 | 2460361.6807803707                    | 2460361.681609738   | 1.1314631544244789 | 62.06397017458836  | -29.9375  | 90.0    | 11.494070833333332  | 38.936499999999995   | 11.265375129687158   |
| 36 TOIS61<br>37 TOIS61        | 2-01_90.000s_R-0094_00t1.fts<br>2-01_90.000s_R-0097_out1.fts | 35 0.0          | 60361.67/198854275 | 2460361.67/1988543 | 2460361.676678021  | 2460361.6820077063                    | 2460361.6828370737  | 1.12/964096/08/636 | 62.4021631082/059  | -29.90625 | 90.0    | 11.4940/08333333332 | 38,9364999999999999  | 10.409985651240826   |
| 38 TOI561                     | 2-01_90.000s_R-0098_out1.fts                                 | 38 0.0          | 60361.68210567115  | 2460361.682105671  | 2460361.681584838  | 2460361.686914559                     | 2460361.6877439264  | 1.1145549482260686 | 63.75598230629054  | -29.96875 | 90.0    | 11.494070833333332  | 38.9364999999999995  | 10.582681062744447   |
| 39 TOI561                     | 2-01_90.000s_R-0099_out1.fts                                 | 39 0.0          | 60361.68333240738  | 2460361.6833324074 | 2460361.682811574  | 2460361.688141304                     | 2460361.6889706715  | 1.1113443211916048 | 64.09486692348621  | -29.9375  | 90.0    | 11.4940708333333332 | 38.9364999999999995  | 10.424610452834342   |
| 41 TOIS61                     | 2-01_90.000s_R-0100_0011.lls                                 | 40 0.0          | 60361.685786122456 | 2460361.6857861225 | 2460361.685265289  | 2460361.690595032                     | 2460361.6901976597  | 1.105088225871773  | 64.7731912910347   | -29.9375  | 90.0    | 11.4940708333333332 | 38,9364999999999999  | 10.17839941576472    |
| 42 TOI561                     | 2-01_90.000s_R-0102_out1.fts                                 | 42 0.0          | 60361.68701251177  | 2460361.687012512  | 2460361.6864916785 | 2460361.6918214355                    | 2460361.6926508024  | 1.1020430462573534 | 65.11246312005882  | -29.9375  | 90.0    | 11.494070833333332  | 38.9364999999999995  | 9.671822567502804    |
| 43 TOI561                     | 2-01_90.000s_R-0103_out1.fts                                 | 43 0.0          | 60361.68823888898  | 2460361.688238889  | 2460361.6877180557 | 2460361.6930478215                    | 2460361.6938771885  | 1.0990515650182697 | 65.45188772868885  | -29.90625 | 90.0    | 11.4940708333333332 | 38.9364999999999995  | 9.897002731891837    |
| 45 TOIS61                     | 2-01_90.000s_R-0104_0011.fts<br>2-01_90.000s_R-0110_out1.fts | 45 0.0          | 60361.69946447922  | 2460361.689464479  | 2460361.688943646  | 2460361.6942734206                    | 2460361.6951027876  | 1.096115061779851  | 67.83228219410555  | -29.96875 | 90.0    | 11.4940708333333332 | 38.9364999999999999  | 9.56084665164711     |
| 46 TOI561                     | 2-01_90.000s_R-0112_out1.fts                                 | 46 0.0          | 60361.699276851956 | 2460361.699276852  | 2460361.6987560187 | 2460361.7040858646                    | 2460361.704915231   | 1.074453985065385  | 68.51350039023718  | -29.90625 | 90.0    | 11.494070833333332  | 38.9364999999999995  | 9.982949806210614    |
| 47 TOI561<br>48 TOI561        | 2-01_90.000s_R-0114_out1.fts<br>2-01_90.000s_R-0115_out1.fts | 47 0.0          | 60361.70172939822  | 2460361.701729398  | 2460361.701208565  | 2460361.7065384286                    | 2460361.707367795   | 1.0695355455436064 | 69.19528416999016  | -29.9375  | 90.0    | 11.4940708333333332 | 38.93649999999999995 | 9.011376055542176    |
| 49 TOI561                     | 2-01_90.000s_R-0116_out1.fts                                 | 49 0.0          | 60361.7041809028   | 2460361.704180903  | 2460361.7036600695 | 2460361.708989951                     | 2460361.7098193173  | 1.0648100191661014 | 69.87728996712802  | -29.9375  | 90.0    | 11.4940708333333332 | 38.9364999999999999  | 10.523415485997338   |
| 50 TOI561                     | 2-01_90.000s_R-0120_out1.fts                                 | 50 0.0          | 60361.70924664335  | 2460361.7092466434 | 2460361.70872581   | 2460361.714055728                     | 2460361.7148850947  | 1.0556355648646811 | 71.28811569269776  | -29.9375  | 90.0    | 11.494070833333332  | 38.936499999999995   | 9.818694449876576    |
| 51 TOIS61                     | 2-01_90.000s_R-0128_out1.hts<br>2-01_90.000s_R-0128_out1.hts | 51 0.0          | 60361.71905254619  | 2460361.719052546  | 2460361.718531713  | 2460361.723861702                     | 2460361.724691068   | 1.0400513995929361 | 74.02448758264576  | -29.96875 | 90.0    | 11.4940708333333332 | 38.9364999999999999  | 9.607818884815174    |
| 53 TOI561                     | 2-01_90.000s_R-0130_out1.fts                                 | 53 0.0          | 60361.7215047339   | 2460361.721504734  | 2460361.7209839006 | 2460361.726313907                     | 2460361.727143273   | 1.036586668181223  | 74.70978723288016  | -29.9375  | 90.0    | 11.494070833333332  | 38.9364999999999995  | 9.252206515336045    |
| 54 TOI561                     | 2-01_90.000s_R-0131_out1.fts                                 | 54 0.0          | 60361.72273113439  | 2460361.7227311344 | 2460361.722210301  | 2460361.727540317                     | 2460361.7283696826  | 1.034917091600943  | 75.05266202391618  | -29.9375  | 90.0    | 11.494070833333332  | 38.9364999999999995  | 10.128745326587113   |
| 55 TOI561                     | 2-01_90.000s_R-0132_00t1.fts<br>2-01_90.000s_R-0135_00t1.fts | 55 0.0          | 60361.72395752324  | 2460361.7239575232 | 2460361.72343669   | 2460361.7287667147                    | 2460361.7295960803  | 1.0332893103525052 | 75.39562353407912  | -29.968/5 | 90.0    | 11.4940708333333332 | 38.9364999999999999  | 9.693/0/69118/05     |
| 57 TOI561                     | 2-01_90.000s_R-0137_out1.fts                                 | 57 0.0          | 60361.73008819437  | 2460361.7300881944 | 2460361.729567361  | 2460361.73489743                      | 2460361.7357267956  | 1.0257693075415502 | 77.11134882571643  | -29.9375  | 90.0    | 11.4940708333333332 | 38.9364999999999995  | 9.883860948245522    |
| 58 TOI561                     | 2-01_90.000s_R-0138_out1.fts                                 | 58 0.0          | 60361.73131482629  | 2460361.7313148263 | 2460361.730793993  | 2460361.736124071                     | 2460361.736953436   | 1.0243864503514735 | 77.45487304201438  | -29.9375  | 90.0    | 11.4940708333333332 | 38.9364999999999995  | 9.927669971056728    |
| 60 TOI561                     | 2-01_90.000s_R-0141_00t1.fts<br>2-01_90.000s_R-0142_out1.fts | 60 0.0          | 60361.736218171194 | 2460361.736218171  | 2460361.735697338  | 2460361.7398011573 2460361.7410274507 | 2460361.740630523   | 1.0204801886062957 | 78.82880659644893  | -29.93/5  | 90.0    | 11.4940708333333332 | 38,9364999999999999  | 9.551004845334205    |
| 61 TOI561                     | 2-01_90.000s_R-0143_out1.fts                                 | 61 0.0          | 60361.73744467599  | 2460361.737444676  | 2460361.7369238427 | 2460361.7422539643                    | 2460361.74308333    | 1.0180717827277828 | 79.17264885622531  | -29.9375  | 90.0    | 11.494070833333332  | 38.9364999999999995  | 18.414027366001584   |
| 62 TOI561                     | 2-01_90.000s_R-0148_out1.fts                                 | 62 0.0          | 60361.74357523164  | 2460361.7435752316 | 2460361.7430543983 | 2460361.748384564                     | 2460361.7492139293  | 1.0127313625066068 | 80.89223222048439  | -29.9375  | 90.0    | 11.494070833333332  | 38.9364999999999995  | 10.772154425054154   |
| 64 TOIS61                     | 2-01_90.000s_R-0152_00t1.fts<br>2-01_90.000s_R-0153_out1.fts | 64 0.0          | 60361.748480671085 | 2460361.7497059144 | 2460361.749185081  | 2460361.753290039                     | 2460361.7541194037  | 1.0091457610406454 | 82.61319916956907  | -29.9375  | 90.0    | 11.4940708333333332 | 38,9364999999999999  | 10.257359775601493   |
| 65 TOI561                     | 2-01_90.000s_R-0154_out1.fts                                 | 65 0.0          | 60361.75093298592  | 2460361.750932986  | 2460361.7504121526 | 2460361.7557423715                    | 2460361.756571736   | 1.0075791704283161 | 82.95779391805739  | -29.90625 | 90.0    | 11.494070833333332  | 38.9364999999999995  | 9.82602278483292 v   |
| <                             |                                                              |                 |                    |                    |                    |                                       |                     |                    |                    |           |         |                     |                      | >                    |

Figure 4: Sample of Measurements Taken (Generated from AstroImageJ)

Ultimately to analyze the lightcurve, we manipulated various star's flux on the plot regarding ingress/egress times, transit parameters, scaling, etc.

# 4. Results

This section presents the results of our ground-based light curve and RMS vs dmag plot of Gaia reference stars. Figure 5 is our light curve generated through AstroImageJ. Figure 6 is our RMS vs dmag plot.



Figure 5: Light Curve Plot (Generated from AstroImageJ)



Figure 6: RMS vs dmag (Generated from AstroImageJ)

## 5. Discussions

Our results were not optimal, as many of our observations in our predicted time of transit were bad photos (cloud cover, streaks).

Looking at our generated light curve (Figure 6), there does not seem to be a transit in our predicted ingress and egress times. There, however, seems to be potentially a transit after our predicted times, as seen by a noticeable dip in flux from 0.64 to 0.87. However, that is still difficult to say because we do not have much data during that dip. If the ingress or egress times are incorrect, this means there could be even more inconsistencies with our predicted characteristics of TOI 5612.01. This could, however, be something future research looks at.

Additionally, there seems to be a large fluctuation in the transit depth generated from our light curve and the transit depth we once predicted. This may be attributed to the timing of the transit in the first place or other inconsistencies in our predicted characteristics of TOI 5612.01.

There is an overall high RMS of 54.32, suggesting a large margin of error and scatter in our data. This makes it difficult to truly make any conclusive decision.

Referencing Figure 6, RMS vs dmag, we were also unable to conclude if there was an NEB. The target stars are all outside of the boundaries. In general, we can not make a conclusive decision with our RMS vs dmag plot either.

#### 6. Conclusions and Future Work

We were unable to reach a definitive conclusion on whether a transit truly occurred on TOI 56121.01 at the expected time, with the expected duration and depth. This paper will be one of the first ground-based light curve follow-ups on TOI 5612.01, so we do not have any research to base on from the past. We do, however, have suggestions for future work. First, we suggest to collect a larger quantity of quality data. Ideally, this data is not only in the predicted ingress and egress times—having some data outside of those times is great in case the transit does not happen at the expected times. From our work, we believe that there is a possibility that the transit does not occur at the original expected times. In turn, there also may potentially be errors with the expected duration and depth of the transit if the predicted ingress and egress times were wrong. We do not, however, conclude with such a statement as our collected data is not substantial enough to reach such a conclusion, especially with our RMS. In all, we believe that if more quality data were used in the analysis, TOI 5612.01's transit could be pinpointed, which would lead us our way to determining if TOI 5612.01 is an exoplanet.

# References

(n.d.). NASA Exoplanet Archive. Retrieved August 16, 2024, from https://exoplanetarchive.ipac.caltech.edu/index.html

(n.d.). MAST Home | MAST. Retrieved August 17, 2024, from https://archive.stsci.edu/

How many exoplanets are there? (n.d.). NASA Science. Retrieved August 16, 2024, from

https://science.nasa.gov/exoplanets/how-many-exoplanets-are-there/