Skip to main
Math equations

Applied and Computational Math Seminar: Koopman spectra in reproducing kernel Hilbert spaces

Speaker:Suddhasattwa Das, Courant Institute of Mathematical Sciences, New York University
Title: Koopman spectra in reproducing kernel Hilbert spaces

Abstract: Every invertible dynamical system induces a Koopman operator, which is a linear, unitary operator acting on the space of observables. Koopman eigenfunctions represent the periodic or non-mixing component of the dynamics. The extraction of these eigenfunctions from a given time-series is a non-trivial problem when the underlying system has a continuous spectrum, which behaves like a strong noisy component to the signal. Of particular significance are the eigenfunctions of the Koopman operator, one among many of their physical significance is that they correspond to stable spatio-temporal patterns in the dynamics. This paper describes methods for identifying Koopman eigenfrequencies and eigenfunctions from a discretely sampled time-series generated by an unknown dynamical system. Given the values of a function at these time samples, our main result gives necessary and sufficient conditions under which these values can be extended to a functional space called a reproducing kernel Hilbert space or RKHS. An RKHS is a dense subset of the space of continuous functions and is very useful for out-of-sample extensions. We take a data-driven approach, which means inferring properties of the system from a time-series which could be of dimension much smaller than the underlying system, and without having any prior knowledge of the system, or a model or equations to start with, or parameters to tune/fit. Given a sequence of N time samples of the dynamical system through some observation map, one fits an RKHS function for every candidate eigenfrequency, omega, and calculate its RKHS norm w_N(\omega). We use the limit $\lim_{N\to\infty} w_N(\omega)$ to derive necessary and sufficient conditions for omega to be an eigenfrequency.



Time: Friday, March 2, 2018, 1:30-2:30pm

Place: Exploratory Hall, Room 4106

* The programs and services offered by George Mason University are open to all who seek them. George Mason does not discriminate on the basis of race, color, religion, ethnic national origin (including shared ancestry and/or ethnic characteristics), sex, disability, military status (including veteran status), sexual orientation, gender identity, gender expression, age, marital status, pregnancy status, genetic information, or any other characteristic protected by law. After an initial review of its policies and practices, the university affirms its commitment to meet all federal mandates as articulated in federal law, as well as recent executive orders and federal agency directives.