Skip to main
Math equations

Applied and Computational Math Seminar: Model reduction: A systems-theoretic perspective

Speaker: Serkan Gugercin, Virginia Tech
Title: Model reduction: A systems-theoretic perspective

Abstract: Numerical simulation of large-scale dynamical systems plays a crucial role in studying a great variety of complex physical phenomena. However, simulations in these large-scale settings present significant computational difficulties. Model reduction aims to resolve this computational burden by constructing simpler (reduced order) models, which are much easier and faster to simulate and yet accurately represent the original system. These simpler reduced order models can then serve as efficient surrogates for the original, replacing them, for example, in optimal control and design. In this talk, we will focus on systems theoretical methods for model reduction, with a special emphasis on interpolatory methods based on rational approximation. After reviewing the concept of interpolation in the setting of dynamical systems, we will discuss how to construct optimal interpolants. If time allows, we will also describe recent extensions to nonlinear dynamics. We will use various examples to illustrate the theoretical discussion. 

Time: Friday, March 22, 2019, 1:30-2:30pm

Place: Exploratory Hall, Room 4106

* The programs and services offered by George Mason University are open to all who seek them. George Mason does not discriminate on the basis of race, color, religion, ethnic national origin (including shared ancestry and/or ethnic characteristics), sex, disability, military status (including veteran status), sexual orientation, gender identity, gender expression, age, marital status, pregnancy status, genetic information, or any other characteristic protected by law. After an initial review of its policies and practices, the university affirms its commitment to meet all federal mandates as articulated in federal law, as well as recent executive orders and federal agency directives.