Skip to main
Math equations

Lower bounds for the covolume of lattices of semi-simple Lie groups

Speaker: Ilesanmi Adeboye, Wesleyan University

TitleLower bounds for the covolume of lattices of semi-simple Lie groups

Abstract: A classic theorem of Kazhdan and Margulis states that for any semi-simple Lie group without compact factors, there is a positive lower bound on the co-volume of lattices. A direct consequence is a positive minimum volume for orbifolds modeled on the corresponding symmetric space. In this talk, I will construct an improved upper bound for the sectional curvature of a semi-simple Lie group. I will also show how H. C. Wang’s quantitative analysis of the Kazhdan-Margulis result can be extended to the exceptional Lie groups. These elements will then be used to establish a uniform lower bound for arbitrary orbifold quotients of symmetric spaces of non-compact type.

Time: Friday, October 19, 2018, 3:30-4:20 p.m.

Place: Exploratory Hall, room 4106

Refreshments will be served at 3:00 p.m.

* The programs and services offered by George Mason University are open to all who seek them. George Mason does not discriminate on the basis of race, color, religion, ethnic national origin (including shared ancestry and/or ethnic characteristics), sex, disability, military status (including veteran status), sexual orientation, gender identity, gender expression, age, marital status, pregnancy status, genetic information, or any other characteristic protected by law. After an initial review of its policies and practices, the university affirms its commitment to meet all federal mandates as articulated in federal law, as well as recent executive orders and federal agency directives.