Skip to main

SAFE RETURN TO CAMPUS

As part of Mason's Safe Return to Campus Plan, all classes and associated instructional activities—including final exams—will be conducted virtually beginning November 30, while most campus facilities will remain open. Visit Mason’s Safe Return to Campus Plan for COVID-19 updates.

Math equations

Mathematics Colloquium: Combinatorial Reciprocity Theorems

Speaker: Matt Beck, San Francisco State University

Title: Combinatorial Reciprocity Theorems

Abstract: A common theme of enumerative combinatorics is formed by counting functions that are polynomials. For example, one proves in any introductory graph theory course that the number of proper k-colorings of a given graph G is a polynomial in k, the chromatic polynomial of G. Combinatorics is abundant with polynomials that count something when evaluated at positive integers, and many of these polynomials have a (completely different) interpretation when evaluated at negative integers: these instances go by the name of combinatorial reciprocity theorems. For example, when we evaluate the chromatic polynomial of G at -1, we obtain (up to a sign) the number of acyclic orientations of G, that is, those orientations of G that do not contain a coherently oriented cycle.

Reciprocity theorems appear all over combinatorics. This talk will attempt to show some of the charm (and usefulness!) these theorems exhibit. Our goal is to weave a unifying thread through various combinatorial reciprocity theorems, by looking at them through the lens of geometry.

Time: Friday, August 29, 2014, 3:30-4:20 p.m.

Place: Exploratory Hall, room 4106

Refreshments will be served at 3:00 p.m.