Upcoming Events
Applied & Computational Mathematics seminar: Supervised Optimal Transport
Feb 18, 2022, 1:30 - 2:30 PM
Speaker: Yanxiang Zhao, George Washington University
Title: Supervised Optimal Transport
Abstract: Optimal Transport, a theory for optimal allocation of resources, is widely used in various fields such as astrophysics, machine learning, and imaging science. However, many applications impose elementwise constraints on the transport plan which traditional optimal transport cannot enforce. Here we introduce Supervised Optimal Transport (sOT) that formulates a constrained optimal transport problem where couplings between certain elements are prohibited according to specific applications. sOT is proved to be equivalent to an $l^1$ penalized optimization problem, from which efficient algorithms are designed to solve its entropy regularized formulation. We demonstrate the capability of sOT by comparing it to other variants and extensions of traditional OT in color transfer problem. We also study the barycenter problem in sOT formulation, where we discover and prove a unique reverse and portion selection (control) mechanism. Supervised optimal transport is broadly applicable to applications in which constrained transport plan is involved and the original unit should be preserved by avoiding normalization.
Time: Friday, February 18, 2022, 1:30pm – 2:30pm
Zoom: https://gmu.zoom.us/j/96953045320