Skip to main
Genetic science research

Klimov Studying Origami Antibodies For Threat Sensing

Dmitri Klimov, Professor, Bioinformatics and Computational Biology, is creating a computational platform for designing an antibody-antigen interface based on DNA origami. DNA origami is a nanoscale assembly of DNA strands with designed two- or three-dimensional shapes. Klimov’s goal is to predict de novo peptide sequences, which bind with high affinity to tetanus toxin. The newly developed algorithms will allow researchers to target structured or unstructured antigen regions and to optimize the placement of designed peptides on the surface of DNA origami. Klimov and his collaborators will conduct the proposed simulations for this project at Mason. In all, Klimov received $195,414 for this project, which is funded by Parabon Nanolabs, a Reston-based nanotechnology company, with the primary sponsor being the U.S. Army.  
 
Funding began in August 2020 and will conclude in August 2022.  

* The programs and services offered by George Mason University are open to all who seek them. George Mason does not discriminate on the basis of race, color, religion, ethnic national origin (including shared ancestry and/or ethnic characteristics), sex, disability, military status (including veteran status), sexual orientation, gender identity, gender expression, age, marital status, pregnancy status, genetic information, or any other characteristic protected by law. After an initial review of its policies and practices, the university affirms its commitment to meet all federal mandates as articulated in federal law, as well as recent executive orders and federal agency directives.